
979-8-3503-4737-1/23/$31.00 ©2023 IEEE

Code Clone Detection Using Boosting Algorithms 

M.V. Thanoshan
Department of Computing and 

Information Systems,  

Sabaragamuwa University of Sri Lanka 

Belihuloya, Sri Lanka 
mvthanoshan@gmail.com  

Kuhaneswaran Banujan 
Department of Computing and 

Information Systems,  

Sabaragamuwa University of Sri Lanka 

Belihuloya, Sri Lanka 
bhakuha@appsc.sab.ac.lk  

B.T.G.S Kumara 
Department of Computing and 

Information Systems,  

Sabaragamuwa University of Sri Lanka 

Belihuloya, Sri Lanka 
btgsk2000@gmail.com 

S. Prasanth
Department of Physical Sciences and 

Technologies,  

Sabaragamuwa University of Sri Lanka 

Belihuloya, Sri Lanka 
sprasanth@appsc.sab.ac.lk  

Zhenni Li 
School of Automation,  

Guangdong University of Technology 

Guangzhou 510006, China 
lizhenni2012@gmail.com 

Incheon Paik 
School of Computer Science and 

Engineering,  

University of Aizu 

Aizu-Wakamatsu, Fukushima, Japan 
paikic@u-aizu.ac.jp  

Abstract— To increase programming productivity, 

developers often copy and paste the source code with or without 

changing it. However, they may also introduce significant 

downsides in the long run, including complicating the software 

and raising maintenance costs. The activity of duplicating the 

code is known as code cloning. They are classified into four types 

– Type-1, Type-2, Type-3, and Type-4. In this paper, the author

presents a machine-learning approach for detecting code clones

of all kinds except for Type-2. Abstract Syntax Trees are used

to extract features from the methods. A distance combination

approach combines two feature vectors of a pair of methods and

their class labels. Once the dataset is finalised, a machine-

learning approach is utilised to classify the clone type.

Moreover, boosting classifiers like XGBoost, CatBoost,

LightGBM, Gradient Boosting and AdaBoost are evaluated for

the highest classification accuracy. From the results obtained,

LightGBM outperformed all the other classifiers with the

highest F1 score of 0.81. This study would motivate future

researchers to focus on identifying the Type-2 clones and

extracting novel features in determining the clone types.

Keywords— Code Cloning, Software Engineering, Machine 

Learning, Abstract Syntax Trees. 

I. INTRODUCTION

The two primary stages of the software development life 
cycle are initial development and active maintenance and 
evolution to fulfil constantly changing customer requirements. 
In the majority of other industries, development expenditures 
make up the lion’s share of a project’s overall cost [1]. 
However, 90% of the expense of software over its lifespan in 
the software development sector goes toward maintenance [2]. 
In software development, developers often tend to copy and 
paste the code with or without modifications [3]. This copied 
code (duplicated code) is known as a code clone. The activity 
of duplicating the code is known as code cloning [4]. The idea 
of code cloning is recognised as one of the bad smells and 
makes software maintenance more difficult [5]. Therefore, 
code clones make it more difficult to maintain software [5, 6]. 

There are four types of code clones: Type-1 (T1), Type-2 
(T2), Type-3 (T3), and Type-4 (T4) [7, 8]. T1 clones are 
syntactically identical (exactly the same) code fragments 
besides differences in layouts, comments, and whitespaces. T2 
clones are syntactically identical code fragments besides 
differences in literals, identifiers, and types, along with T1 
differences. T3 clones are syntactically similar (not identical) 
code fragments beside differences in statements (statements 
can be added or changed, or removed) along with T1 and T2 

differences. T4 clones are syntactically dissimilar code 
fragments that implement the same functionality [7, 8]. 
Meanwhile, considering the adverse effects of code clones in 
software, code clone detection is an active area of research [4]. 
Six code clone detection techniques are available based on 
internal source code representation. They are text-based, 
token-based, tree-based, Program Dependency Graph (PDG)-
based, metrics-based, and hybrid approaches [8]. 

In the text-based technique, the target source code is 
considered a sequence of strings. Code clones are detected by 
comparing sequences of strings of two code fragments. In the 
token-based technique, the target source code is parsed into a 
sequence of tokens. To find duplicated subsequences of 
tokens, the sequence is scanned. Ultimately, actual code 
fragments representing duplicated subsequences are returned 
as code clones. The tree-based technique parses target source 
code into Abstract Syntax Trees (ASTs). Using tree-matching 
techniques, similar subtrees are searched in the parsed tree. 
Finally, actual code fragments representing identical subtrees 
are returned as code clones. PDG-based technique parses 
target source code into PDGs. Then, the isomorphic subgraph 
matching algorithm is utilised to discover similar subgraphs 
[8]. 

At last, code fragments representing similar subgraphs are 
returned as code clones. In the metrics-based technique, 
various metrics are extracted from code fragments. To detect 
code clones, vectors of metrics are compared. Hybrid 
approaches comprise one among two or both hybrid code 
representation and hybrid techniques. These approaches can, 
however, also be grouped under the earlier subcategories [8]. 

Fig. 1 shows that the original method and its T1 clone 
method are syntactically identical after removing the 
whitespaces, layouts, and comments (trimming). The original 
method and its T2 clone method are syntactically identical 
after trimming and normalising identifiers, literals, and types. 
Even though a new statement is inserted and an existing 
statement is modified, the original method is syntactically 
similar to its T3 clone method after trimming and normalising. 
It can be noticed that the T4 clone method is syntactically 
dissimilar from the original method. However, they perform 
the exact computation even though they are varied a lot in their 
shape. For example, when focusing on the original method, it 
uses for loop to calculate the factorial value of the given value 
of n, whereas its T4 clone method uses recursion to calculate 
the factorial value of the given value of n. Therefore, in terms 
of semantics, computation, and functionality, both are similar. 
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In this paper, the author extracts features using ASTs to 
classify code clones as they require substantially minor effort 
to represent code patterns, scalable with a huge codebase and 
have well-defined syntax [9, 10]. Adaptive Boosting 
(AdaBoost), Gradient Boosting, CatBoost, and Light Gradient 
Boosting Machine (LightGBM) are the first to use in this 
research method to the best of the author’s knowledge. 
Remaining of the paper is prepared as follows. In Section II, 
the author discusses the related works. Section III introduces 
the methodology. Section IV contains the results and 
discussion. In Section V, the paper is concluded with future 
works. 

II. RELATED WORKS 

Sheneamer and Kalita [10] developed machine-learning 
models to classify T3 and T4 clones. Both AST and PDG were 
used to extract features. The pair of code fragments are 
represented as a vector, and pairings are used to train 
supervised learning classifiers to recognise different sorts of 
clones. They made use of the IJaDataset 2.0 dataset [11]. They 
evaluated fifteen machine learning algorithms, including 
Random Forest, Rotation Forest, and Extreme Gradient 
Boosting (XGBoost). 

Saini, et al. [12] proposed an approach that not only 
identifies T1 to T3 but also code clones in the Twilight Zone 
- clones between T3 and T4. Machine learning, information 
retrieval, and software metrics are all combined to establish 
their code clone approach. For the dataset, they collected 
50,000 arbitrary Java projects from GitHub. Their approach 
introduced the Siamese architecture of Deep Neural Networks 
and established high performance in the manual evaluation of 
precision and evaluation of recall using BigCloneBench [13-
15].   

For software, functional clone detection, Wu, et al. [16] 
blended token-based and graph-based methods. As an initial 
step, they collected Control Flow Graph from the source code. 
Using social-network-centrality analysis, the centrality of 
each token in a basic block is then assigned, and the 
centralities of the same token in other basic blocks are added. 
This converted a graph into specific tokens with graph 
information. The siamese architecture of the Neural Network 
model is trained by utilising the above-mentioned tokens. 
Google Code Jam and BigCloneBench repository are used for 
evaluations. 

Sheneamer, et al. [17] extracted features from pair of 
method blocks using ASTs and PDGs. These two feature 
vectors were fused into a feature vector using three distinct 
ways – linear combination, multiplicative combination, and 
distance combination. This research used seven datasets, 
including Eric, sample j2sdk 1.4.0-java-swing, sample 
eclipse-jdtcore, eclipse-ant, netbean-javadoc, and Suple and 
IJaDataset 2.0. They evaluated sixteen classification models, 
including Random Forest, Convolutional Neural Network, 
and XGBoost. 

Jo, et al. [9] created an approach using a two-pass strategy 
and a Tree-based Convolution Neural Network to identify 
different code clones. Initially, source code is converted into 
ASTs then vector representation of AST nodes is collected. In 
the first pass, clones are detected. The detected clones are then 
passed into the second pass, where the clone types are 
classified. BigCloneBench, a notable and generally utilised 

repository of cloned code, was used for evaluations. Their 
approach detected clones (in the first pass) with an average of 
96% recall and precision and classified clones (in the second 
pass) with an average of 78% recall and precision. 

White, et al. [18] proposed a deep learning-based approach 
for code clone detection. Recurrent and Recursive Neural 
Networks were employed for deep learning code at the lexical 
and syntactic levels. Tokenising the source code was done 
using ANTLR, and training was done using the RNNLM 
toolkit. Additionally, they created AST using the Eclipse Java 
programming environment. As a result, they were successful 
in identifying all four varieties of code clones at the file and 
method levels. 

Several approaches have been used to detect code clones 
based on the related works listed above. However, none of the 
researchers utilised boosting algorithms such as AdaBoost, 
CatBoost, Gradient Boosting, and LightGBM to detect code 
clones. It’s reasonable to extract features using ASTs as they 
efficiently represent the exact syntactic structure of source 
code and are scalable with massive code. Therefore, it can be 
a strong foundation to detect code clones using prevailing 
boosting algorithms to impact the software development 
industry and the research community positively. 

III. METHODOLOGY 

Definition 1 (Method). A method M refers to a Java 
method. Within a pair of curly brackets, an ordered sequence 
of statements, �� , � =  1, … , 	 that represents how the method 
should behave, for example, declarations, assignments, 
method calls, loops, and branching. 


 = < ��, … �
 > 

Definition 2 (Code Clones). Two methods 
�, and 
� are 

considered as code clone pairs if they are similar based on 
extracted metrics. 

������
� , 
�� =  �1, �� ����
� , 
�� > �
�, ��ℎ�� ���.  

The entire methodological framework and all the steps in 
this study are depicted in Fig. 2 below, and each stage has been 
thoroughly explained. 

A. BigCloneBench Java Repository 

This study uses BigCloneBench [13-15], a big data inter-
project Java repository comprises of known true and false 
positive clones. BigCloneBench is a prominent repository in 
code clone detection studies [9, 16]. It’s hard to separate T3 
and T4 clone pairs with the same functionality since there is 
no general agreement on the T3 clone’s minimum syntactical 
similarity. Therefore, researchers, based on syntactical 
similarity, separated them into four categories. They are Very-
Strongly Type-3 (VST3), Strongly Type-3 (ST3), Moderately 
Type-3 (MT3), and Weakly Type-3/Type-4 (WT3/4). VST3 
ranges from 90% (inclusive) to 100% (exclusive), ST3 ranges 
from 70-90%, MT3 ranges from 50-70%, and WT3/4 ranges 
from 0-50% [13, 14]. BigCloneBench repository offers false 
clone pairs as well. The meaning of false clone pair is that they 
are syntactically dissimilar code fragments that don’t 
implement the same functionality (functionally dissimilar 
code fragments). The syntactical similarity between false 
clone pairs is purely coincidental [13]. 
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Fig. 1. Examples of different types of code clones

Features of this study are the frequency of programming 
constructs, and there’s no difference between T1 and T2 
clones apart from literal values, identifier names, and types. 
Programming constructs specified in [17] supplementary 
material cannot focus on differentiating literals, identifiers, 
and types. Therefore, it cannot be distinguished when fusing 

two feature vectors of a pair of T1 or T2 methods using the 
distance combination strategy (as used in this study). 
Therefore, the author has considered only T1 clone pairs. 
However, this study can detect the rest of the clone types. Not 
detecting T2 clones along with the rest is a limitation of this 
study. 

 

Fig. 2. Research Method 
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Hence, for classifying code clones properly, this study 
focuses on six target classes – T1, VST3, ST3, MT3, WT3/4, 
and False. The author retrieved 4190 pairs for every kind from 
the BigCloneBench repository. In total, the author retrieved 
25140 pair instances representing six target classes. 

B. Feature Extraction 

The author extracted all, a total of twenty-eight features 
listed under traditional (fourteen features) and AST (fourteen 
features) categories specified in the supplementary material of 
[17], including lines count, assignments count, selection 
statements count, iteration statements count, synchronised 
statements count, and return statements count. The author 
used Eclipse Java Development Tools (JDT) to generate ASTs 
and extract features. Fig 3 shows the simplified view of AST. 

Extracted features of paired methods 
�  and 
�  can be 

represented as feature vectors: 
� = < ���, ��", … , ��# >, and 

� = < ���, ��", … , ��# >. 

C. Fusion of Method Features 

A pair of feature vectors are combined into a single vector 
followed with corresponding class label. Here, class label 
refers to the clone class type. Given a pair of methods 
� and 

� , and their class label $1, the fused feature vector can be 

represented as ��%�&���'< 
� , 
� >(. The author fuses two 

vectors using the distance combination strategy [17]. Distance 
combination strategy is done by calculating the absolute 
difference between the two associated values of a feature. In 
the end, a fused feature vector for a pair of a method with its 
class label can be represented as ��%�&���'< 
� , 
� >(  =
 < )��� * ���), … , )��# * ��#), $1 >, where C1 represents the 

class label. 

Summary of Steps Used to Finalise the Dataset 

Step 1. Retrieve paired methods. This step retrieves paired 
methods from the BigCloneBench repository. 

Step 2. Extract features from paired methods. This step 
extracts features from methods using Eclipse JDT. 

Step 3. Fuse a pair of feature vectors using a distance 
combination strategy with their class labels. 

Step 4. Feed the data (25140 fused vectors) into CSV. 

D. Data Pre-processing 

This is one of the prior tasks with the dataset to get 
prominent results. This process was carried out to remove 
noisy, duplicate, and unreliable data. It’s a time-consuming 
and tedious task to be performed manually. This process was 
carried out within a limited time by accommodating a third-
party library called “Pandas” and the different pre-processing 
functions available with mentioned library. Python was a core 
programming language to do almost all the tasks from pre-
processing to model development. 

The normalisation was performed with the 
aforementioned dataset under pre-processing to refine the data 
further. To do so, Min-Max Scaling has accommodated to re-
scale the features in the range of [0,1] for the specified data. 

E. Identifying the Optimum Values for the Hyper-

parameters 

A machine model can behave differently from different 
datasets. So, it’s one of the crucial parts of controlling the 
model’s behaviour or identifying the optimum values for its 
respective hyper-parameters for a specific dataset. This task 
can be frequently accomplished through a search algorithm. 
During this study, the GridSearchCV method offered by 
Scikit-learn was used. The entire dataset was split into two 
partitions, namely training and testing, with a percentage of 70 
and 30, respectively. Then ‘train_test_split’ method facilitated 
by the Sklearn was configured initially to perform the 
GridSearchCV. 

 

Fig. 3. Simplified AST View 
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F. Implementing the Model 

Each algorithm/model needs to be trained along with the 
values for its respective hyper-parameters. So, once the 
individual hyper-parameter values have been set, the data can 
be passed into the aforementioned boosting algorithms for the 
training, and each boosting algorithm will be tested for the 
highest classification accuracy. Moreover, the evaluation 
matrices like Precision, Recall, F1-Score, and Support values 
also get evaluated to check the performance of the classifiers 
considered. 

IV. RESULTS AND DISCUSSION 

This section explored the results obtained from the 
significant processes mentioned above. The optimum values 
discovered from GridSearchCV for the hyper-parameters of 
the selected boosting algorithms are mentioned in Table I 
below. 

TABLE I.  HYPER-PARAMETERS OF BOOSTING ALGORITHMS  

Boosting Technique Hyper-parameters and Their Optimum Values 

CatBoost depth=6, iterations=90, learning_rate=0.02 

LightGBM n_estimators = 460, colsample_bytree = 0.8, 
max_depth= 8, num_leaves=10, reg_alpha=1.2, 
learning_rate=0.12, reg_lambda=1.2, 
subsample=0.8, subsample_freq=10 

XGBoost n_estimators=400, gamma=1, 
colsample_bytree=0.7, max_depth=10, 
reg_alpha=1.2, reg_lambda=1.2, subsample=0.8 

AdaBoost learning_rate = 0.01, n_estimators = 600 

Gradient Boosting n_estimators=60, learning_rate= 0.1, 
max_features=’sqrt’, max_depth=5, 
random_state=10 

 

Once the appropriate hyper-parameter values were set 
with respective algorithms, training and evaluating the 
algorithms were carried out. Table II below specifies the 
accuracies and error rate obtained for each boosting algorithm 
in classifying the clone types.  

TABLE II.  EVALUATION RESULTS OBTAINED FOR BOOSTING 

ALGORITHMS 

Technique Recall Precision F1 Score 

CatBoost 0.73 0.74 0.71 

LightGBM 0.82 0.83 0.81 

XGBoost 0.81 0.82 0.80 

AdaBoost 0.39 0.27 0.28 

Gradient Boosting 0.73 0.74 0.72 

 

As mentioned in Table II, the LightGBM model performs 
well with a Recall of 0.82, Precision of 0.83, and F1 Score of 
0.81. Moreover, evaluation metrics are also grabbed and 
represented in Table III to ensure the performance of boosting 
algorithms in classifying the clone types. 

The highest values across different algorithms and clones 
for each precision, recall, and F1 score are highlighted. 
Interestingly, a 1.00 recall score is obtained by all models for 
T1 clones. Although all the models exhibit good performances 
overall, the AdaBoost model fails to predict WT3/4 and false 
clone pairs. According to Table III, it’s concluded LightGBM 
model has produced more reliable and precise  results. 

Results on BigCloneBench are reported in Table IV. 
Results of the prevailing techniques are obtained from [19]. It 
can be seen that the LightGBM model outperforms 
SourcererCC, RtvNN, and Deckard in Recall. However, it 

shows a lack of performance in precision. It surpasses 
SourcererCC, RtvNN, and Deckard in F1 Score. Overall, 
TreeCen performs well regarding Recall, Precision, and F1 
Score. It indicates that more novel and valuable features must 
be extracted from the source code. Further, for effective code 
clone detection, Deep Learning approaches can be utilised. 

TABLE III.  PERFORMANCE OF BOOSTING ALGORITHMS 

Algorithms Type of 

Clone 
Precision Recall 

F1 

Score 

CatBoost T1 0.70 1.00 0.82 

VST3 0.81 0.40 0.54 

ST3 0.68 0.68 0.68 

MT3 0.70 0.74 0.72 

WT3/4 0.72 0.86 0.79 

False 0.82 0.66 0.73 

LightGBM T1 0.71 1.00 0.83 

VST3 0.86 0.52 0.65 

ST3 0.81 0.80 0.80 

MT3 0.83 0.84 0.83 

WT3/4 0.88 0.90 0.89 

False 0.89 0.86 0.87 

XGBoost T1 0.71 1.00 0.83 

VST3 0.84 0.52 0.64 

ST3 0.81 0.77 0.79 

MT3 0.80 0.83 0.82 

WT3/4 0.86 0.90 0.88 

False 0.89 0.84 0.87 

AdaBoost T1 0.69 1.00 0.82 

VST3 0.35 0.03 0.06 

ST3 0.41 0.83 0.55 

MT3 0.20 0.48 0.28 

WT3/4 0.00 0.00 0.00 

False 0.00 0.00 0.00 

Gradient 
Boosting 

T1 0.70 1.00 0.82 

VST3 0.80 0.44 0.57 

ST3 0.68 0.68 0.68 

MT3 0.69 0.72 0.70 

WT3/4 0.79 0.81 0.80 

False 0.78 0.75 0.76 

TABLE IV.  RESULTS ON BIGCLONEBENCH 

Technique Recall Precision F1 Score 

LightGBM 0.82 0.83 0.81 

Sheneamer, et al. [17] 0.95 0.95 0.95 

SourcererCC 0.07 0.98 0.14 

RtvNN 0.01 0.95 0.01 

DeepSim 0.98 0.97 0.98 

SCDetector 0.92 0.97 0.95 

Deckard 0.06 0.93 0.12 

ASTNN 0.94 0.92 0.93 

TreeCen 0.99 0.99 0.99 

 

V. CONCLUSION AND FUTURE WORKS 

Detection of code clones is necessary for active software 
maintenance, minimising software maintenance cost and 
reducing bad smells in the code. Twenty-eight features are 
extracted from source code using ASTs because of their high 
scalability, large codebase, well-defined syntax, and minimal 
effort required to generate them. The author presents a 
machine-learning approach for detecting code clones. For the 
greatest classification accuracy, boosting classifiers were also 
considered, including XGBoost, CatBoost, LightGBM, 
Gradient Boosting, and AdaBoost. According to the results, 
LightGBM performed better than all the other classifiers, with 
a maximum F1 score of 0.81. This work will encourage 
subsequent researchers to concentrate more on locating T2 
clones and obtaining fresh features. As a future work, the 
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author plans to extract novel features from the source code to 
detect T2 clones with the rest of the clones and to improve the 
code clone detection performance. 
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