
979-8-3503-4737-1/23/$31.00 ©2023 IEEE

Code Clone Detection Using Boosting Algorithms

M.V. Thanoshan
Department of Computing and

Information Systems,

Sabaragamuwa University of Sri Lanka

Belihuloya, Sri Lanka
mvthanoshan@gmail.com

Kuhaneswaran Banujan
Department of Computing and

Information Systems,

Sabaragamuwa University of Sri Lanka

Belihuloya, Sri Lanka
bhakuha@appsc.sab.ac.lk

B.T.G.S Kumara
Department of Computing and

Information Systems,

Sabaragamuwa University of Sri Lanka

Belihuloya, Sri Lanka
btgsk2000@gmail.com

S. Prasanth
Department of Physical Sciences and

Technologies,

Sabaragamuwa University of Sri Lanka

Belihuloya, Sri Lanka
sprasanth@appsc.sab.ac.lk

Zhenni Li
School of Automation,

Guangdong University of Technology

Guangzhou 510006, China
lizhenni2012@gmail.com

Incheon Paik
School of Computer Science and

Engineering,

University of Aizu

Aizu-Wakamatsu, Fukushima, Japan
paikic@u-aizu.ac.jp

Abstract— To increase programming productivity,

developers often copy and paste the source code with or without

changing it. However, they may also introduce significant

downsides in the long run, including complicating the software

and raising maintenance costs. The activity of duplicating the

code is known as code cloning. They are classified into four types

– Type-1, Type-2, Type-3, and Type-4. In this paper, the author

presents a machine-learning approach for detecting code clones

of all kinds except for Type-2. Abstract Syntax Trees are used

to extract features from the methods. A distance combination

approach combines two feature vectors of a pair of methods and

their class labels. Once the dataset is finalised, a machine-

learning approach is utilised to classify the clone type.

Moreover, boosting classifiers like XGBoost, CatBoost,

LightGBM, Gradient Boosting and AdaBoost are evaluated for

the highest classification accuracy. From the results obtained,

LightGBM outperformed all the other classifiers with the

highest F1 score of 0.81. This study would motivate future

researchers to focus on identifying the Type-2 clones and

extracting novel features in determining the clone types.

Keywords— Code Cloning, Software Engineering, Machine

Learning, Abstract Syntax Trees.

I. INTRODUCTION

The two primary stages of the software development life
cycle are initial development and active maintenance and
evolution to fulfil constantly changing customer requirements.
In the majority of other industries, development expenditures
make up the lion’s share of a project’s overall cost [1].
However, 90% of the expense of software over its lifespan in
the software development sector goes toward maintenance [2].
In software development, developers often tend to copy and
paste the code with or without modifications [3]. This copied
code (duplicated code) is known as a code clone. The activity
of duplicating the code is known as code cloning [4]. The idea
of code cloning is recognised as one of the bad smells and
makes software maintenance more difficult [5]. Therefore,
code clones make it more difficult to maintain software [5, 6].

There are four types of code clones: Type-1 (T1), Type-2
(T2), Type-3 (T3), and Type-4 (T4) [7, 8]. T1 clones are
syntactically identical (exactly the same) code fragments
besides differences in layouts, comments, and whitespaces. T2
clones are syntactically identical code fragments besides
differences in literals, identifiers, and types, along with T1
differences. T3 clones are syntactically similar (not identical)
code fragments beside differences in statements (statements
can be added or changed, or removed) along with T1 and T2

differences. T4 clones are syntactically dissimilar code
fragments that implement the same functionality [7, 8].
Meanwhile, considering the adverse effects of code clones in
software, code clone detection is an active area of research [4].
Six code clone detection techniques are available based on
internal source code representation. They are text-based,
token-based, tree-based, Program Dependency Graph (PDG)-
based, metrics-based, and hybrid approaches [8].

In the text-based technique, the target source code is
considered a sequence of strings. Code clones are detected by
comparing sequences of strings of two code fragments. In the
token-based technique, the target source code is parsed into a
sequence of tokens. To find duplicated subsequences of
tokens, the sequence is scanned. Ultimately, actual code
fragments representing duplicated subsequences are returned
as code clones. The tree-based technique parses target source
code into Abstract Syntax Trees (ASTs). Using tree-matching
techniques, similar subtrees are searched in the parsed tree.
Finally, actual code fragments representing identical subtrees
are returned as code clones. PDG-based technique parses
target source code into PDGs. Then, the isomorphic subgraph
matching algorithm is utilised to discover similar subgraphs
[8].

At last, code fragments representing similar subgraphs are
returned as code clones. In the metrics-based technique,
various metrics are extracted from code fragments. To detect
code clones, vectors of metrics are compared. Hybrid
approaches comprise one among two or both hybrid code
representation and hybrid techniques. These approaches can,
however, also be grouped under the earlier subcategories [8].

Fig. 1 shows that the original method and its T1 clone
method are syntactically identical after removing the
whitespaces, layouts, and comments (trimming). The original
method and its T2 clone method are syntactically identical
after trimming and normalising identifiers, literals, and types.
Even though a new statement is inserted and an existing
statement is modified, the original method is syntactically
similar to its T3 clone method after trimming and normalising.
It can be noticed that the T4 clone method is syntactically
dissimilar from the original method. However, they perform
the exact computation even though they are varied a lot in their
shape. For example, when focusing on the original method, it
uses for loop to calculate the factorial value of the given value
of n, whereas its T4 clone method uses recursion to calculate
the factorial value of the given value of n. Therefore, in terms
of semantics, computation, and functionality, both are similar.

244

20
23

 3
rd

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 A

dv
an

ce
d

R
es

ea
rc

h
in

 C
om

pu
tin

g
(I

C
A

R
C

) |
 9

79
-8

-3
50

3-
47

37
-1

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
D

O
I:

10
.1

10
9/

IC
A

R
C

57
65

1.
20

23
.1

01
45

63
8

Authorized licensed use limited to: Memorial University. Downloaded on August 26,2024 at 21:20:15 UTC from IEEE Xplore. Restrictions apply.

In this paper, the author extracts features using ASTs to
classify code clones as they require substantially minor effort
to represent code patterns, scalable with a huge codebase and
have well-defined syntax [9, 10]. Adaptive Boosting
(AdaBoost), Gradient Boosting, CatBoost, and Light Gradient
Boosting Machine (LightGBM) are the first to use in this
research method to the best of the author’s knowledge.
Remaining of the paper is prepared as follows. In Section II,
the author discusses the related works. Section III introduces
the methodology. Section IV contains the results and
discussion. In Section V, the paper is concluded with future
works.

II. RELATED WORKS

Sheneamer and Kalita [10] developed machine-learning
models to classify T3 and T4 clones. Both AST and PDG were
used to extract features. The pair of code fragments are
represented as a vector, and pairings are used to train
supervised learning classifiers to recognise different sorts of
clones. They made use of the IJaDataset 2.0 dataset [11]. They
evaluated fifteen machine learning algorithms, including
Random Forest, Rotation Forest, and Extreme Gradient
Boosting (XGBoost).

Saini, et al. [12] proposed an approach that not only
identifies T1 to T3 but also code clones in the Twilight Zone
- clones between T3 and T4. Machine learning, information
retrieval, and software metrics are all combined to establish
their code clone approach. For the dataset, they collected
50,000 arbitrary Java projects from GitHub. Their approach
introduced the Siamese architecture of Deep Neural Networks
and established high performance in the manual evaluation of
precision and evaluation of recall using BigCloneBench [13-
15].

For software, functional clone detection, Wu, et al. [16]
blended token-based and graph-based methods. As an initial
step, they collected Control Flow Graph from the source code.
Using social-network-centrality analysis, the centrality of
each token in a basic block is then assigned, and the
centralities of the same token in other basic blocks are added.
This converted a graph into specific tokens with graph
information. The siamese architecture of the Neural Network
model is trained by utilising the above-mentioned tokens.
Google Code Jam and BigCloneBench repository are used for
evaluations.

Sheneamer, et al. [17] extracted features from pair of
method blocks using ASTs and PDGs. These two feature
vectors were fused into a feature vector using three distinct
ways – linear combination, multiplicative combination, and
distance combination. This research used seven datasets,
including Eric, sample j2sdk 1.4.0-java-swing, sample
eclipse-jdtcore, eclipse-ant, netbean-javadoc, and Suple and
IJaDataset 2.0. They evaluated sixteen classification models,
including Random Forest, Convolutional Neural Network,
and XGBoost.

Jo, et al. [9] created an approach using a two-pass strategy
and a Tree-based Convolution Neural Network to identify
different code clones. Initially, source code is converted into
ASTs then vector representation of AST nodes is collected. In
the first pass, clones are detected. The detected clones are then
passed into the second pass, where the clone types are
classified. BigCloneBench, a notable and generally utilised

repository of cloned code, was used for evaluations. Their
approach detected clones (in the first pass) with an average of
96% recall and precision and classified clones (in the second
pass) with an average of 78% recall and precision.

White, et al. [18] proposed a deep learning-based approach
for code clone detection. Recurrent and Recursive Neural
Networks were employed for deep learning code at the lexical
and syntactic levels. Tokenising the source code was done
using ANTLR, and training was done using the RNNLM
toolkit. Additionally, they created AST using the Eclipse Java
programming environment. As a result, they were successful
in identifying all four varieties of code clones at the file and
method levels.

Several approaches have been used to detect code clones
based on the related works listed above. However, none of the
researchers utilised boosting algorithms such as AdaBoost,
CatBoost, Gradient Boosting, and LightGBM to detect code
clones. It’s reasonable to extract features using ASTs as they
efficiently represent the exact syntactic structure of source
code and are scalable with massive code. Therefore, it can be
a strong foundation to detect code clones using prevailing
boosting algorithms to impact the software development
industry and the research community positively.

III. METHODOLOGY

Definition 1 (Method). A method M refers to a Java
method. Within a pair of curly brackets, an ordered sequence
of statements, �� , � = 1, … , 	 that represents how the method
should behave, for example, declarations, assignments,
method calls, loops, and branching.

 = < ��, … �
 >

Definition 2 (Code Clones). Two methods
�, and
� are

considered as code clone pairs if they are similar based on
extracted metrics.

������
� ,
�� = �1, �� ����
� ,
�� > �
�, ��ℎ�� ���.

The entire methodological framework and all the steps in
this study are depicted in Fig. 2 below, and each stage has been
thoroughly explained.

A. BigCloneBench Java Repository

This study uses BigCloneBench [13-15], a big data inter-
project Java repository comprises of known true and false
positive clones. BigCloneBench is a prominent repository in
code clone detection studies [9, 16]. It’s hard to separate T3
and T4 clone pairs with the same functionality since there is
no general agreement on the T3 clone’s minimum syntactical
similarity. Therefore, researchers, based on syntactical
similarity, separated them into four categories. They are Very-
Strongly Type-3 (VST3), Strongly Type-3 (ST3), Moderately
Type-3 (MT3), and Weakly Type-3/Type-4 (WT3/4). VST3
ranges from 90% (inclusive) to 100% (exclusive), ST3 ranges
from 70-90%, MT3 ranges from 50-70%, and WT3/4 ranges
from 0-50% [13, 14]. BigCloneBench repository offers false
clone pairs as well. The meaning of false clone pair is that they
are syntactically dissimilar code fragments that don’t
implement the same functionality (functionally dissimilar
code fragments). The syntactical similarity between false
clone pairs is purely coincidental [13].

245Authorized licensed use limited to: Memorial University. Downloaded on August 26,2024 at 21:20:15 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Examples of different types of code clones

Features of this study are the frequency of programming
constructs, and there’s no difference between T1 and T2
clones apart from literal values, identifier names, and types.
Programming constructs specified in [17] supplementary
material cannot focus on differentiating literals, identifiers,
and types. Therefore, it cannot be distinguished when fusing

two feature vectors of a pair of T1 or T2 methods using the
distance combination strategy (as used in this study).
Therefore, the author has considered only T1 clone pairs.
However, this study can detect the rest of the clone types. Not
detecting T2 clones along with the rest is a limitation of this
study.

Fig. 2. Research Method

246Authorized licensed use limited to: Memorial University. Downloaded on August 26,2024 at 21:20:15 UTC from IEEE Xplore. Restrictions apply.

Hence, for classifying code clones properly, this study
focuses on six target classes – T1, VST3, ST3, MT3, WT3/4,
and False. The author retrieved 4190 pairs for every kind from
the BigCloneBench repository. In total, the author retrieved
25140 pair instances representing six target classes.

B. Feature Extraction

The author extracted all, a total of twenty-eight features
listed under traditional (fourteen features) and AST (fourteen
features) categories specified in the supplementary material of
[17], including lines count, assignments count, selection
statements count, iteration statements count, synchronised
statements count, and return statements count. The author
used Eclipse Java Development Tools (JDT) to generate ASTs
and extract features. Fig 3 shows the simplified view of AST.

Extracted features of paired methods
� and
� can be

represented as feature vectors:
� = < ���, ��", … , ��# >, and

� = < ���, ��", … , ��# >.

C. Fusion of Method Features

A pair of feature vectors are combined into a single vector
followed with corresponding class label. Here, class label
refers to the clone class type. Given a pair of methods
� and

� , and their class label $1, the fused feature vector can be

represented as ��%�&���'<
� ,
� >(. The author fuses two

vectors using the distance combination strategy [17]. Distance
combination strategy is done by calculating the absolute
difference between the two associated values of a feature. In
the end, a fused feature vector for a pair of a method with its
class label can be represented as ��%�&���'<
� ,
� >(=
 <)��� * ���), … ,)��# * ��#), $1 >, where C1 represents the

class label.

Summary of Steps Used to Finalise the Dataset

Step 1. Retrieve paired methods. This step retrieves paired
methods from the BigCloneBench repository.

Step 2. Extract features from paired methods. This step
extracts features from methods using Eclipse JDT.

Step 3. Fuse a pair of feature vectors using a distance
combination strategy with their class labels.

Step 4. Feed the data (25140 fused vectors) into CSV.

D. Data Pre-processing

This is one of the prior tasks with the dataset to get
prominent results. This process was carried out to remove
noisy, duplicate, and unreliable data. It’s a time-consuming
and tedious task to be performed manually. This process was
carried out within a limited time by accommodating a third-
party library called “Pandas” and the different pre-processing
functions available with mentioned library. Python was a core
programming language to do almost all the tasks from pre-
processing to model development.

The normalisation was performed with the
aforementioned dataset under pre-processing to refine the data
further. To do so, Min-Max Scaling has accommodated to re-
scale the features in the range of [0,1] for the specified data.

E. Identifying the Optimum Values for the Hyper-

parameters

A machine model can behave differently from different
datasets. So, it’s one of the crucial parts of controlling the
model’s behaviour or identifying the optimum values for its
respective hyper-parameters for a specific dataset. This task
can be frequently accomplished through a search algorithm.
During this study, the GridSearchCV method offered by
Scikit-learn was used. The entire dataset was split into two
partitions, namely training and testing, with a percentage of 70
and 30, respectively. Then ‘train_test_split’ method facilitated
by the Sklearn was configured initially to perform the
GridSearchCV.

Fig. 3. Simplified AST View

247Authorized licensed use limited to: Memorial University. Downloaded on August 26,2024 at 21:20:15 UTC from IEEE Xplore. Restrictions apply.

F. Implementing the Model

Each algorithm/model needs to be trained along with the
values for its respective hyper-parameters. So, once the
individual hyper-parameter values have been set, the data can
be passed into the aforementioned boosting algorithms for the
training, and each boosting algorithm will be tested for the
highest classification accuracy. Moreover, the evaluation
matrices like Precision, Recall, F1-Score, and Support values
also get evaluated to check the performance of the classifiers
considered.

IV. RESULTS AND DISCUSSION

This section explored the results obtained from the
significant processes mentioned above. The optimum values
discovered from GridSearchCV for the hyper-parameters of
the selected boosting algorithms are mentioned in Table I
below.

TABLE I. HYPER-PARAMETERS OF BOOSTING ALGORITHMS

Boosting Technique Hyper-parameters and Their Optimum Values

CatBoost depth=6, iterations=90, learning_rate=0.02

LightGBM n_estimators = 460, colsample_bytree = 0.8,
max_depth= 8, num_leaves=10, reg_alpha=1.2,
learning_rate=0.12, reg_lambda=1.2,
subsample=0.8, subsample_freq=10

XGBoost n_estimators=400, gamma=1,
colsample_bytree=0.7, max_depth=10,
reg_alpha=1.2, reg_lambda=1.2, subsample=0.8

AdaBoost learning_rate = 0.01, n_estimators = 600

Gradient Boosting n_estimators=60, learning_rate= 0.1,
max_features=’sqrt’, max_depth=5,
random_state=10

Once the appropriate hyper-parameter values were set
with respective algorithms, training and evaluating the
algorithms were carried out. Table II below specifies the
accuracies and error rate obtained for each boosting algorithm
in classifying the clone types.

TABLE II. EVALUATION RESULTS OBTAINED FOR BOOSTING

ALGORITHMS

Technique Recall Precision F1 Score

CatBoost 0.73 0.74 0.71

LightGBM 0.82 0.83 0.81

XGBoost 0.81 0.82 0.80

AdaBoost 0.39 0.27 0.28

Gradient Boosting 0.73 0.74 0.72

As mentioned in Table II, the LightGBM model performs
well with a Recall of 0.82, Precision of 0.83, and F1 Score of
0.81. Moreover, evaluation metrics are also grabbed and
represented in Table III to ensure the performance of boosting
algorithms in classifying the clone types.

The highest values across different algorithms and clones
for each precision, recall, and F1 score are highlighted.
Interestingly, a 1.00 recall score is obtained by all models for
T1 clones. Although all the models exhibit good performances
overall, the AdaBoost model fails to predict WT3/4 and false
clone pairs. According to Table III, it’s concluded LightGBM
model has produced more reliable and precise results.

Results on BigCloneBench are reported in Table IV.
Results of the prevailing techniques are obtained from [19]. It
can be seen that the LightGBM model outperforms
SourcererCC, RtvNN, and Deckard in Recall. However, it

shows a lack of performance in precision. It surpasses
SourcererCC, RtvNN, and Deckard in F1 Score. Overall,
TreeCen performs well regarding Recall, Precision, and F1
Score. It indicates that more novel and valuable features must
be extracted from the source code. Further, for effective code
clone detection, Deep Learning approaches can be utilised.

TABLE III. PERFORMANCE OF BOOSTING ALGORITHMS

Algorithms Type of

Clone
Precision Recall

F1

Score

CatBoost T1 0.70 1.00 0.82

VST3 0.81 0.40 0.54

ST3 0.68 0.68 0.68

MT3 0.70 0.74 0.72

WT3/4 0.72 0.86 0.79

False 0.82 0.66 0.73

LightGBM T1 0.71 1.00 0.83

VST3 0.86 0.52 0.65

ST3 0.81 0.80 0.80

MT3 0.83 0.84 0.83

WT3/4 0.88 0.90 0.89

False 0.89 0.86 0.87

XGBoost T1 0.71 1.00 0.83

VST3 0.84 0.52 0.64

ST3 0.81 0.77 0.79

MT3 0.80 0.83 0.82

WT3/4 0.86 0.90 0.88

False 0.89 0.84 0.87

AdaBoost T1 0.69 1.00 0.82

VST3 0.35 0.03 0.06

ST3 0.41 0.83 0.55

MT3 0.20 0.48 0.28

WT3/4 0.00 0.00 0.00

False 0.00 0.00 0.00

Gradient
Boosting

T1 0.70 1.00 0.82

VST3 0.80 0.44 0.57

ST3 0.68 0.68 0.68

MT3 0.69 0.72 0.70

WT3/4 0.79 0.81 0.80

False 0.78 0.75 0.76

TABLE IV. RESULTS ON BIGCLONEBENCH

Technique Recall Precision F1 Score

LightGBM 0.82 0.83 0.81

Sheneamer, et al. [17] 0.95 0.95 0.95

SourcererCC 0.07 0.98 0.14

RtvNN 0.01 0.95 0.01

DeepSim 0.98 0.97 0.98

SCDetector 0.92 0.97 0.95

Deckard 0.06 0.93 0.12

ASTNN 0.94 0.92 0.93

TreeCen 0.99 0.99 0.99

V. CONCLUSION AND FUTURE WORKS

Detection of code clones is necessary for active software
maintenance, minimising software maintenance cost and
reducing bad smells in the code. Twenty-eight features are
extracted from source code using ASTs because of their high
scalability, large codebase, well-defined syntax, and minimal
effort required to generate them. The author presents a
machine-learning approach for detecting code clones. For the
greatest classification accuracy, boosting classifiers were also
considered, including XGBoost, CatBoost, LightGBM,
Gradient Boosting, and AdaBoost. According to the results,
LightGBM performed better than all the other classifiers, with
a maximum F1 score of 0.81. This work will encourage
subsequent researchers to concentrate more on locating T2
clones and obtaining fresh features. As a future work, the

248Authorized licensed use limited to: Memorial University. Downloaded on August 26,2024 at 21:20:15 UTC from IEEE Xplore. Restrictions apply.

author plans to extract novel features from the source code to
detect T2 clones with the rest of the clones and to improve the
code clone detection performance.

ACKNOWLEDGEMENT

This research is partially funded by Foreign Expert Project
of Ministry of Science and Technology of China under Grant
DL2022030011L.

REFERENCES

[1] F. Rahman, C. Bird, and P. Devanbu, "Clones: What Is That Smell?,"
Empirical Software Engineering, vol. 17, pp. 503-530, 2012.

[2] S. M. H. Dehaghani and N. Hajrahimi, "Which Factors Affect Software
Projects Maintenance Cost More?," Acta Informatica Medica, vol. 21,
p. 63, 2013.

[3] M. Kim, L. Bergman, T. Lau, and D. Notkin, "An Ethnographic Study
of Copy and Paste Programming Practices in Oopl," in Proceedings.
2004 International Symposium on Empirical Software Engineering,
2004. ISESE'04., 2004, pp. 83-92.

[4] Q. U. Ain, W. H. Butt, M. W. Anwar, F. Azam, and B. Maqbool, "A
Systematic Review on Code Clone Detection," IEEE access, vol. 7, pp.
86121-86144, 2019.

[5] A. Monden, D. Nakae, T. Kamiya, S.-i. Sato, and K.-i. Matsumoto,
"Software Quality Analysis by Code Clones in Industrial Legacy
Software," in Proceedings Eighth IEEE Symposium on Software
Metrics, 2002, pp. 87-94.

[6] A. Yamashita and S. Counsell, "Code Smells as System-level
Indicators of Maintainability: an Empirical Study," Journal of Systems
and Software, vol. 86, pp. 2639-2653, 2013.

[7] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo,
"Comparison and Evaluation of Clone Detection Tools," IEEE
Transactions on software engineering, vol. 33, pp. 577-591, 2007.

[8] C. K. Roy and J. R. Cordy, "A Survey on Software Clone Detection
Research," Queen’s School of Computing TR, vol. 541, pp. 64-68,
2007.

[9] Y.-B. Jo, J. Lee, and C.-J. Yoo, "Two-pass Technique for Clone
Detection and Type Classification Using Tree-based Convolution
Neural Network," Applied Sciences, vol. 11, p. 6613, 2021.

[10] A. Sheneamer and J. Kalita, "Semantic Clone Detection Using
Machine Learning," in 2016 15th IEEE International Conference on
Machine Learning and Applications (ICMLA), 2016, pp. 1024-1028.

[11] (2013). SeClone - secold. Available:
https://sites.google.com/site/asegsecold/projects/seclone

[12] V. Saini, F. Farmahinifarahani, Y. Lu, P. Baldi, and C. V. Lopes,
"Oreo: Detection of Clones in the Twilight Zone," in Proceedings of
the 2018 26th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software
Engineering, 2018, pp. 354-365.

[13] J. Svajlenko, J. F. Islam, I. Keivanloo, C. K. Roy, and M. M. Mia,
"Towards a Big Data Curated Benchmark of Inter-project Code
Clones," in 2014 IEEE International Conference on Software
Maintenance and Evolution, 2014, pp. 476-480.

[14] J. Svajlenko and C. K. Roy, "Evaluating Clone Detection Tools With
Bigclonebench," in 2015 IEEE international conference on software
maintenance and evolution (ICSME), 2015, pp. 131-140.

[15] J. Svajlenko and C. K. Roy, "Bigcloneeval: a Clone Detection Tool
Evaluation Framework With Bigclonebench," in 2016 IEEE
international conference on software maintenance and evolution
(ICSME), 2016, pp. 596-600.

[16] Y. Wu, D. Zou, S. Dou, S. Yang, W. Yang, F. Cheng, et al.,
"Scdetector: Software Functional Clone Detection Based on Semantic
Tokens Analysis," in Proceedings of the 35th IEEE/ACM International
Conference on Automated Software Engineering, 2020, pp. 821-833.

[17] A. Sheneamer, S. Roy, and J. Kalita, "An Effective Semantic Code
Clone Detection Framework Using Pairwise Feature Fusion," IEEE
Access, 2021.

[18] M. White, M. Tufano, C. Vendome, and D. Poshyvanyk, "Deep
Learning Code Fragments for Code Clone Detection," in 2016 31st
IEEE/ACM International Conference on Automated Software
Engineering (ASE), 2016, pp. 87-98.

[19] Y. Hu, D. Zou, J. Peng, Y. Wu, J. Shan, and H. Jin, "Treecen: Building
Tree Graph for Scalable Semantic Code Clone Detection," in 37th
IEEE/ACM International Conference on Automated Software
Engineering, 2022, pp. 1-12.

249Authorized licensed use limited to: Memorial University. Downloaded on August 26,2024 at 21:20:15 UTC from IEEE Xplore. Restrictions apply.

